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ABSTRACT

This paper offers a technique to construct a prediction interval for the future value of the last variable in 
the vector r of m variables when the number of observed values of r is small. Denoting r(t) as the time-t 
value of r, we model the time-(t+1) value of the m-th variable to be dependent on the present and l-1 
previous values r(t), r(t-1), …, r(t-l+1) via a conditional distribution which is derived from an (ml+1)-
dimensional power-normal distribution. The ( )%2/100 α  and ( )%2/1100 α−  points of the conditional 
distribution may then be used to form a prediction interval for the future value of the m-th variable. A 
method is introduced to estimate the above (ml+1)-dimensional power-normal distribution such that the 
coverage probability of the resulting prediction interval is nearer to the target value 1- α .     
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INTRODUCTION 

Time series models usually require big data set in order to produce reasonably good out-of-
sample prediction of future values.  In practice, there are many situations in which the data size 
is small. For example, when a new product or service is launched, the newly recorded series is 
likely to be a short time series. Short time series may also be an outcome  when a corporation 
has undergone a business process re-engineering so that most past data become irrelevant.

When the short time series exhibits stable seasonal pattern, several authors attempted 
to predict the end-of-season total of the (n+1)-th season, given the observation series of the 
first n seasons and part of the observation series in the (n+1)-th season (see Hertz & Schaffir 
(1960); Murray & Silver (1966); Chang & Fyffe (1971); Green & Harrison (1973); Box & 
Jenkins (1976);  Oliver (1987); Guerrero & Elizondo (1997); Chen & Fomby (1999); Alba & 
Mendoza (2001), (2006)).

This paper offers a method to perform 
the one-step prediction of the future value of 
a short time series. Initially let us assume that 
we have a small number of observations of a 
vector r = (r1, r2, ...,rm) of m variables which 
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have been recorded at evenly spaced time intervals. Let t be the present time, and r(t) the value 
of r at time t. The time-(t+1) value of the m-th variable rm of r is modelled to be dependent on 
the present and l-1 previous values r(t), r(t-1), ..., r(t-l+1) via a conditional distribution which 
is derived from an (ml+1)-dimensional power-normal distribution. A prediction interval for 
the value of rm at time t+1 may be formed from the 100(α /2)% and 100(1-α /2) % points of 
the conditional distribution.

The above (ml+1)-dimensional power-normal distribution may be estimated by using 

(A)   the values of r(u) for u ≤ t or

(B)   the values of r(u) for u ≤ t and an estimated value of  rm at time t+1

The estimation of the value of rm at time t+1 in (B) may be performed by using an 
extrapolation based on a low degree polynomial fitted to a small number nr of values of rm at 
time t, t-1, ..., t-nr+1.

The prediction interval based on the (ml+1) - dimensional power-normal distribution 
estimated by using the values in (A) (or B) may be referred to as a Type A (or B) prediction 
interval.

Type A prediction interval has a coverage probability which may be fairly low. On the 
other hand, the coverage probability of Type B prediction interval tends to be larger than that 
of Type A prediction interval. When we take a union of the Type B prediction interval based 
on linear extrapolation with that based on quadratic extrapolation, the resulting prediction 
interval may have a coverage probability which is 1.5 to 2 times of the coverage probability 
of Type A prediction interval. 

The paper is organised as follows: Section 2 provides a brief description of the method 
based on multivariate power-normal distribution for finding prediction intervals. In Section 
3, Type B prediction intervals and their union are compared with Type A prediction interval. 
Section 4 concludes the paper.

METHOD BASED ON MULTIVARIATE POWER-NORMAL DISTRIBUTION

Let us begin with the non-normal distribution given in Yeo and Johnson (2000). The authors 
in Yeo and Johnson (2000) have introduced the following power transformation
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Let y be a vector consisting of k correlated random variables. The vector y is said to have 
a   k-dimensional power-normal distribution with parameters  ki ≤≤1  if 

                                                         (2)

where , H is an orthogonal matrix, kεεε ,...,, 21  are uncorrelated,
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0>iσ  is a constant, and iε
~   has a power-normal distribution with parameters +

iλ  and −
iλ .

When the values of y1, y2, ..., yk-1 are given, we may find an approximation for the conditional 
probability density function (pdf) of yk by using the numerical procedure given in Pooi (2012). 

We may choose the variables y1, y2, ..., yk to be those given by the values of components 
of r(t-l+1),..., r(t-1), r(t) together with the value of rm(t+1) in the lag-(l-1) model.

From the data which span over T units of time, we can form a table of T-l rows with each 
row representing an observed value of (y1, y2, ..., yk). From the table, we can form the iw-th 
moving window of size nw from the iw-th row till the (iw + nw-1)-th row. We can form a total of 
T-l-nw such windows of size nw. We next find a k-dimensional power-normal distribution for 
(y1, y2, ..., yk) using the data in the iw-th window.

Letting y1, y2, ..., yk be given by the first k-1 values in the ( wi +nw)-th row immediately after 
the wi -th window, we may now find a conditional distribution for ky  when 121 ,...,, −kyyy  are 
given. The mean ( )wi

kŷ  of the conditional distribution is then an estimate of the value of the last 
component at the next unit of time. On the other hand, the 100(α/2) % and 100(1-α/2)% points 
of the conditional distribution may be regarded as the lower and upper limits of the nominally 
100(1-α)% out-of-sample prediction interval for the value of the last component at the next 
unit of time. This prediction interval may be referred to as a Type A prediction interval.    

The mean absolute percentage error (MAPE) is given by 

MAPE = ( ) ( ) %100/ˆ1
1
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where  ( )wi
ky  is the observed value of the last component at the next unit of time. The value of 

MAPE which is small is an indication that the predictive power of the model is good. 
The coverage probability of the prediction interval may be estimated by the proportion of 

prediction intervals which include the observed value of the last component at the next unit of 
time. Meanwhile, the expected length of the prediction interval may be estimated by the average 
length of the prediction intervals. When the estimated coverage probability is close to the target 
value 1-α, a small value of the average length is indicative of good predictive power of the model. 

When the size T of the data is small, the size nw of the window that we can form will 
also be small. The first k-1 values in the (iw+nw)-th row immediately after the iw-th window 
may be then not within the feasible range specified by the (k-1)-dimensional power-normal 
distribution fitted to the data in the first k-1 columns in the iw-th window. The prediction of the 
k-th component yk in the light of the first k-1 components would thus be unreliable.

A remedy for the problem caused by the non-concordance of the first k-1 values in the 
(iw+nw)-th row with the fitted (k-1)-dimensional distribution is to augment the iw-th window 
by another row formed by the first k-1 values in the (iw+nw)-th row and the value obtained by 
an extrapolation of a low degree polynomial fitted to a small number nr of values in the lower 
portion of the last column in the iw-th window, and fit a k-dimensional power-normal distribution 
to the augmented iw-th window. A prediction interval for the k-th component in the light of the 
first k-1 components may then be found as before. The resulting prediction interval shall be 
called a Type B prediction interval.
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We may take a union of the Type B prediction interval based on linear extrapolation with 
that based on quadratic extrapolation to form yet another prediction interval. The estimate 
associated with the interval formed by the union operation for the value of the k-th component 
yk one unit of time ahead may be taken to be the average of the means of the conditional 
distributions used for forming the two Type B prediction intervals.

PERFORMANCE OF PREDICTION INTERVALS

Monthly data from January 2006 to December 2012 for six selected macroeconomic variables 
shall be used to investigate Type A and Type B prediction intervals. The six selected variables 
are Gross Domestic Product, Money Supply (M2), Inflation Rate, Oil Price, Gold Price and 
Kuala Lumpur Composite Index (KLCI).

From the Malaysian data based on six variables, we can obtain a total of T-1 = 83 observed 
values of the vector 

[r1(t), r2(t),...,r6(t), r6(t+1)]                                                                   (5)

where r1(t), r2(t),...,r6(t) are the values of the six variables in the t-th month, t = 1, 2, ..., 83.
Setting k = 7, yi = ri(t), 1 ≤ i ≤ 6, y7 = r6(t+1), nw = 13, 15, 17, 20, 25, 30, 40, or 50, we apply 

the method in Section 2 to find
1. Type A prediction interval
2. Type B prediction interval based on linear extrapolation
3. Type B prediction interval based on quadratic extrapolation
4. Union of the Type B prediction intervals in 2 and 3.

The measures of the performance of the four prediction intervals are shown in Tables 1-3.

Table 1
Coverage probability of prediction interval (l = 1, k = 7, nr = 6, α = 0.05)

nw Type A
Type B

(Linear)
Type B

(Quadratic)
Union

13 0.442857 0.500000 0.442857 0.685714
15 0.397059 0.602941 0.529412 0.794118
17 0.439394 0.606061 0.530303 0.757576

20 0.539683 0.650794 0.603175 0.809524
25 0.534483 0.706897 0.655172 0.793103
30 0.679245 0.735849 0.735849 0.792453
40 0.813953 0.837209 0.813953 0.883721
50 0.787879 0.818182 0.878788 0.909091
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Table 1 shows that the coverage probability of Type A prediction interval is about 0.4 
which is fairly low when the size nw of the window is small, and this probability increases 
to about 0.8 as nw increases to 50. It appears that further increase in nw may not improve the 
coverage probability very much. The coverage probability which falls short of the target value 
0.95 may be attributed to the situations when the KLCI next month may not be concordant 
with the historical distribution due possibly to sudden changes in the economic conditions.  

Table 1 also reveals that Type B prediction intervals tend to have larger coverage 
probabilities than Type A prediction intervals. Furthermore, when nw is small, the union of 
Type B prediction intervals has a coverage probability which is 1.5 to 2.0 times of the coverage 
probabilities of Type A prediction interval.

We observe from Table 2 that among the four prediction intervals, the fourth interval which 
is based on the union operation has the longest average length. This observation is consistent 
with the finding that the fourth interval has the largest coverage probability.  Table 3 shows 
that among the four prediction intervals, the interval based on the union operation tends to 
have the smallest MAPE.

Table 2
Average length of prediction interval (l = 1, k = 7, nr = 6, α = 0.05)

nw Type A Type B
(Linear)

Type B
(Quadratic) Union

13 64.71819 81.34884 81.11899 125.72483

15 70.75342 91.85950 88.93333 130.89046

17 80.20313 99.27582 95.95662 137.14357

20 91.92571 108.42993 106.34482 145.10693

25 100.69606 112.54155 113.33079 142.61797

30 107.40846 120.31234 122.07450 144.63468

40 123.55432 129.32158 129.46505 143.97366

50 132.58058 137.31274 137.93529 148.67818

Table 3
Mean absolute percentage error of prediction (MAPE) (l = 1, k = 7, nr = 6, α = 0.05)

nw Type A
Type B

(Linear)
Type B

(Quadratic)
Union

13 3.89217 3.80479 4.18914 3.52733
15 4.92098 3.56945 4.00412 3.41588
17 4.09067 3.49706 3.90302 3.39779
20 4.23346 3.30180 3.68185 3.10027
25 4.63374 3.10077 3.60971 3.11114
30 3.69365 2.96345 2.97683 2.75132
40 2.58016 2.38707 2.32127 2.21094
50 2.31802 2.15529 2.02773 2.06152
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CONCLUSION

The event which may occur after the short time series is difficult to predict. The union of Type 
B prediction intervals which encompass more likely events, is found to have better performance 
in terms of coverage probability. The better performance of the related point estimate for the 
future value, as measured by MAPE, may be attributed to the averaging process which tends 
to produce a more satisfactory estimate.
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